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ABSTRACT

The rewetting of a hot surface is a problem of prime im-

portance in the microgravity application of heat pipe tech-

nology, where rewetting controls the time before operations
can be re-established following depriming of a heat pipe.

Rewetting is also important in the nuclear industry (in pre-

dicting behavior during loss-of-coolant accidents), as well as

in the chemical and petrochemical industries.

Recently Chan and Zhang (1992) have presented a closed-
form solution for the determination of the rewetting speed

of a liquid film flowing over a finite (but long) hot plate

subject to uniform heating. Unfortunately their physically
unreasonable initial conditions preclude a meaningful analy-

sis of start-up transient behavior. The current work pre-
sents a new nondimensionalization and closed-form solution

for an inllnitely-]ong, uniformly-heated plate. Realistic

initial conditions (step change in temperature across the

wetting front) and boundary conditions (no spatial temper-

ature gradients infinitely far from the wetting front) are

employed. The effects of parametric variation on the result-

ing simpler closed-form solution are presented and com-

pared with the predictions of a ;quasi-steady = model. The

time to reach steady-state rewetting is found to be a strong

function of the initial dry-region plate temperature. For

heated plates it is found that in most cases the effect of the

transient response terms cannot be neglected, even for large
times.

NOMENCLATURE

b,c variables of integration

Cp specific heat

h boiling heat transfer coefficient

k thermal conductivity

m function defined in equation (22)

Q uniform heat flux to the plate

q dimensionless heat flux

S plate thickness

T temperature

T s saturation temperature

T o Leidenfrost temperature

t time

U rewetting velocity

u dimensionless rewetting velocity

X,Y length coordinates in Eulerian system

X' length coordinate in Lagrangian system

Greek symbols

a,_ functions used in temperature transformations
(eqs. (11) and (18))

dimensionless length coordinate

8 dimensionless temperature

u transformed dimensionless temperature

(eqs. (11) and (18))

p density

r dimensionless time
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Superscript

* reference quantity

Subscripts

d dry region

w wet region

wf wetting front

I dry plate initial condition

_Y Uquid Y t ,-- We_ing_,/

1_ Plate

T

HeatfluxQ

Figure 1.---Geometry of the problem.

INTRODUCTION

Space Station Freedom (SSF), when built, win require

more power than any previous space facility. The heat gen-
erated as a result of this power must be transported to

radiators where it will be discharged to space. One of the

designs for the SSF thermal management system involves
use of heat pipes in the radiators. Successful prediction of

rewetting characteristics of heat pipes in a spacecraft envi-

ronment requires an understanding of the physical mechan-
isms that control the wetting of a hot surface.

The problem of rewetting a surface which is significantly

above the boiling temperature also has numerous industrial

applications, most notably in the quenching of metals and

in cooling nuclear fuel rod bundles during loss-of-coolant
accidents in water reactors. Nuclear applications have been

behind many of the previous analytical efforts at under-

standing rewetting, such as those of Yamanouchi (1968);

Thompson (1972); Duffey and Porthouse (1973); Coney

(1974); Sun et al. (1974, 1975); Blair (1975); Tien and Yao

(1975); and Dua and Tien (1976), which all found analytical

expressions for the steady-state rewetting velocities by

employing a variety of boiling models to various unheated

surface geometries.

Analysis of the unsteady start-up of rewetting and of the

effect of uniform heating has been sparse. Bukur and Isbin

(1972) performed a numerical analysis of start-up transients
for a few cases corresponding to rewetting in nuclear loss-of-

coolant accidents. They found that the effect of start-up

transients for these cases was negligible. However, parame-

tric ranges appropriate to heat pipe applications were not

studied.

A work has recently been published (Chan and Zhang,

1992) which presents, among other things, a closed-form
analytical solution of the unsteady rewetting of a heated

thin fiat plate. However, the initial conditions considered

preclude any meaningful examination of start-up transients.

Furthermore, no parametric analysis of plate heating was

presented.

in the present work a simpler closed-form solution for re-

wetting velocity is derived for a thin heated fiat plate of

infinite length. Results are presented for a wide range of

initial plate temperatures and heating rates, thus making

the results applicable to micro_ravity heat pipe rewetting

problems. The time-dependent start-up and heating effects
of these solutions are discussed and full-solution heated-

plate results are compared with those of a simplified quasi-

steady solution.

PROBLEM FORMULATION

Consider the problem of rewetting, by a liquid film, an

infinitely-long thin plate initially hotter than the Leiden-

frost temperature (fig. I). The plate is uniformly heated on
its underside while the top dry region is considered adiaba-

tic and the top wet region has a heat loss proportional to

the difference between the plate temperature and liquid sat-

uration temperature. The one-dimensional unsteady formu-

lation of the problem, in dimensionless form, with

appropriate boundary and initial conditons, can be repre-

sented as (see Appendix A):

f 1 aOw U* 80w_ k a20w

Q h Ow
+ (T O - T,)S -

=0

Ow(O,_r) = 1

(_/ < O)

(1)

o...(,_.o)= o
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lOOd U" OOd_ k 020d

pC.L . -
+ Q

[T O - T.)S

8Od = 0

-_. I(.,t)

od(o,O = x

Od(.,O)= Ox

(7 > 0)

(2)

t X' U T - T.
where T= __, t/ = , u = , 0 = ___.

t* X ° U* To - Ts

(q = 0 is the location of the wetting front.) The reference
time, length, and velocity are yet to be determined. In se-

lecting dimensionless parameters the approach taken is to
obtain unit-order dimensionless variables. This results in

different parameters than those of previous investigators

(such as Chan and Zhang (1992); Sun et ai. (1974); and

Duffey and Porthonse (1973)). One relationship between
these reference values can be found by recognizing that the

two terms on the left-hand side of the equation should be of

the same order of magnitude, since they both arise from the

unsteady term of the Eulerian formulation (eqs. (A4)

and (A5)). Thus we have the relationship:

u" = __x" (3)
t*

Another relation is obtained by assuming that boiling is the

dominant term on the right-hand side of the equation• (The

assumption is amply justified for a problem involving

sputtering.)

pCp= h (4)

t-F

Finallya referencelengthischosen by balancing conduction

with the unsteady and boiling terms:

pCp= k (5)

t* X .2

Equations (3) to (5) can be combined to yield the appro-

priatereferencelength,time, and velocity:

X* = _ t* = #CpS U* = 1 ____
h pCp

(_)

Thus the dimensionless systems of equations for the wet

and dry regions are:

aO w _Ow 80w
-- = __ + u__ + q-- 0w
ar _2

80w I = 0

-_l(-.,t)

e,,,(o,O= 1

(7 < 0)

(_)

o_(.,o) = o

_0 d 82 0d 80 d
__=__+u__+q

ar a.2 a.

8°_'I = o
"_. t(.,,+)

(T/ > 0)

(8)

Q
where q --

S(T o - T.)

Here 0, the dimensionless temperature, is a function of

position and time, and u, the dimensionless rewetting

velocity, is a function of time. 01 and q are constants, with

0 z greater than unity.
In order to effecta closed-form solution to the problem,

u win be treated as a constant for any given time. This

approximation makes the equations linear and thus more

tractable.Matching the _/= 0 temperature gradients for

any given r willyieldu for that time.

SOLUTION FOR THE WET REGION

First we solve the boundary condition as r/--,-- to

obtain an expression for 0 as a function of _.The relevant

equation and initialcondition are:

a0 w
__ = q - o. 0w(0)= o (9)
ar
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The solution is easily found to be:

0w(-%0 5 = q(1 - e -r) (10)

By reversing the transformation of equation (115 an expres-
sion for the dimensionless temperature in the wet region is

obtained:

Note that for q > I complete dryout of the plate is expected

for a finite time, '-(q/(q- I)). These high heat flux
conditions are excluded from further consideration.

It is interesting to contrast the initial and boundary

conditions of the present work with those of Chan and

Zhang, who developed a closed-form solution for rewetting

speed on a heated plate of finite (but very large) length.
Chan and Zhang's boundary condition far from the wetting

front was O(--qL1,r ) = 0 (where qL1 )> I), which models the
end of the plate in contact with a liquid reservoir at

saturation temperature and results in spatial temperature

gradients far from the wetting front when q _ O.
Chan and Zhang's initial condition for both the wet and

dry regions was e(q,0) = 01. This is a physically unreason-
able condition for the wet region and as a result the

rewetting velocity conld not be determined for small times.

By employing a transformation to get the problem in the

form of a conduction equation:

0 W

--aw_

= q(1 -- e-r5 -- qe

2_'_

× i (1 - q)e -Bw('-c) + qe -(p'-l)('-c)e-r
o=o (r - c)s/2

(14)

This can be rewritten as:

0 w = q(l -- • -r) + (I -- q)e -('w-_4"_'w)q

+ qe- r e- (aw"l" _/]g'w-'+-1-")q

u u b=o
where a w = _ and /_w = 1 + __

2 4 [ (/Sw + 15r ri2b_] 1+ qe- r exp -- b 2 - db (15)
the following system of equations is obtained:

./--
a_w _w where b = Yr

_w(_,0) = 0

Vw(0J) = 1 - q(1 - e-r)e _'r

,.,,,,(-®,,-)= 0

(125

This system is very close to the elementary conduction

problem of a semi-infinitebody, initiallyat constant tem-

perature,that issubject to a stepchange in boundary tem-

perature at time 0. By employing Duhainel's theorem

(Myers (1987)),we can use the solutionto that problem to

obtain a solution for the present problem as:

JWw _ -. 1-q(1- e-°)/"° - 4-TVa-U-_)2ro:o, exp
(13)

Substituting the expressions for aw and _w, the wet-side

temperature gradient at q = 0 is

aOw[ (_u 2 u)(1 q) + (_u 2 +8 u)qe -r2_ = 4-- -- --
at/I.=o +

1 [ (U 2 _}_ 4)Tld b
+ 2(1 -- q) _ exp _

b=0 [ 4b2 J

2qe-f i [ (U2 + 8)'r]

_/_._r b=O exp[ - 4._.2 ]db
(16)
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SOLUTION FOR THE DRY REGION

The solution for the dry region follows a similar procedure

to that for the wetted region. In this case the boundary
condition far from the wetting front is:

0d(m,_" ) ----- 01 -[- qT (17)

Upon applying the transformation:

vd -- (0 d - q_-- 01)e_dV+Bd r (18)

U 2 U 2

where ad = _ and _d = ad = m
2 4

the following system of equations is obtained:

_d _2 Ud

aT _2

Vd(,i,0) = 0

Ud(0,_r) = (1 -- 01 -- q_')e_dr

(19)

By application of Duhamel's theorem the following results
axe achieved:

0d = (01 + qr) -- (01 + q;"- 1)e -2aan

+ (01 + q_"_ 1)e-aan r/

b----0 exp[-- __

(20)

= 2u(O I + qT- 1)

2(01 + qr- I) i expf-u2rldb (21)

b:o / 4b J

Matching expressions in equations (16) and (21) for the

temperature gradient at _/= 0 yields an expression that,

given 01, q, and r,can be solved iterativelyfor u:

2U(01 + q_'--I ) - (_U 2 + 4 -- U)(1 -- q)

_ 2

X [(01 + qr -- 1)m(u 2)-(1-q)m(u 2-I-4)

- qe-rm(u 2 +8)] = 0 (22)

where m(x) =

1

s  /db
b=0 L 4b2)

This expressionissignificantlysimpler than the only other

comparable solutionin the literature,equation (52)of Chan

and Zhang (1992).

For q = 0 and • -_ =, equation (22) reduces to a solution

equivalent to the one first derived by Yamanouchi (1968):

U

2(01 -- 1) 2 -- 1
(23)

RESULTS AND DISCUSSION

The dependence of velocityon initialplate temperature,

forthe case ofunheated plates(q = 0),isshown in figure 2.

As expected, the rewetting velocityisreduced as the initial

plate temperature isincreased.

An unusual characteristicof the present solution is the

initialinfiniterewetting velocitiesfor 01 * 2. This iscaused

by the temperature step-function initialcondition, which

resultsin infinitewetting-front temperature gradients in

both the wet and dry regions as T _ 0. The sign of these

-s

o
_o
>

v
c-
O

c-
Q)
E

3 _ _,_ 01 = 1.2
2

01 = 1.5

1

-- 2.5

-1

-2 ,4/,(l,hhl I IlllMI I ,llhhl I II,IMI I IlJllhl
10-2 10-1 100 101 10 2 103

Dimensionless time,

Figure 2.--Velocity versus time for unheated (q = 0) conditions.
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infinite velocities depends on the relative temperature

differences between the wet and dry initial temperatures (0

and 01, respectively) and the wetting-front (Leidenfrost)

temperature, 0 = I.

Note that this step function initial condition, while pro-

ducing infinite positive or negative initial velocities, does

not produce an inl'udte initial movement of the wetting

front. This can be shown by examining u_ for small T.

Unless ur --+ 0 as T -+ 0 the physically impossible result
occurs of a nonzero movement of the wetting front, either

finite or inl'mite, for vanishin_y small time. Such a physi-

cally impossible result does not occur for the present

solution (fig. 3).
A significant result of the present work is that the time to

reach steady-state velocity increases sharply as the tem-

perature of the plate increases (fig. 4, solid line). For 01 = 2

about 10t* is required to reach steady state while for 01 = 5

about 100t* is required.

The implications of this result for nuclear applications are

minimal because the high boiling heat transfer coefficients

for such cases result in small reference times. Using the val-

ues of density, specific heat, and plate thickness given by

Bukur and Isbin (1972) for the experiment of Yamanouchi

(1968), and using a heat flttx of 105 kcal/mZhr °C

(Yamanouchi, 1968), t + = 0.035 sec. (The numerical solu-
tious of Bukur and Isbin (1972) confirm that the effects of
initial conditions are minimal for nuclear applications.)

The time to reach steady state can be significant for other

applications, for which the boiling heat transfer coefficient

is several orders of magnitude lower. For the experiment of

Grimley et al. (1988), using values derived by Chan and

Zhang (1992), t* = 7.4 sec and the time to reach steady
state is approximately 150 sec. Thus for nonnuclear situa-

tious such as heat pipe rewetting, the amount of time to

reach steady state could be significant.

Results for heated plates (figs. 5 to 7) establish that,

given enough time, for all cases velocities will first become

negative and then will approach zero. (The dry region plate

temperatures for which these transitions occur are so large

that in most real situations they would be physically unrea-

sonable.) The fact that u --* 0 as r --+ o, can be accounted

for simply by the effect of increased dry region temperature;

as the temperature of the plate gets very large rewetting

occurs very slowly.

An explanation of the negative velocities is more difficult

and can be aided by a comparison of the results of the

complete equation (eq. (22)) with those of a =quasi-steady"

solution based on just the first two terms of equation (22):

[ ["u = 4(1 - q)2 (24)
(201÷2q,-] q)2_(l_q)2

The velocity in this quasi-steady solution is unconditionally

positive (the same would also be true for a solution based

Time to reach 99% of steady-state velocity
------ 2 + q¢ (plate temp. when 81 = 2)

104

t- I-- Steady _J"" _ ^^ 0.1
103 _" /7 /--0.2 _,...-"°

-_. = // 1-'11-t_..__'_ _ _ .

101 _- A/J,/_'_._'_- Unsteady -
/ I1/.,/11 ........

p� fu/;/

I1_1r | _ I _I_I,I I , I , LI,I
100 101 102

01 or 2 + q¢

Figure 3.--Time to reach steady-state velocity (solid line) and
plate temperature for 01 = 2 heated cases (broken lines).

0.08

i 0.04

0

o

on the first three terms of eq. (36)), indicating that the

source of the negative velocities is in the last three terms,

system.

A comparison of the full solution and the quasi-steady

solution for 01 = 2 (fig. 8) confirms the importance of the

transient terms. Agreement between the two solutions

occurs only for q = 0.01. The reason for the lack of agree-

ment in the other cases is evident from an examination of

figure 4, where the broken lines map the plate temperatures

for 0_ = 2 and various levels of heating. Only the q = 0.01
curve ever reaches what can be termed a =quasi-steady"

state, where the velocity can be accurately approximated

6 J. Platt
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Figure 5.--Effect of heat flux on velocity, 01 = 2.
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Figure 7.---Effect of heat flux on velocity, 01 = 1.5.
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Figure 6.--Effect of heat flux on velocity, 01 = 2.5.
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Figure 8.--Comparison of full closed-form solution with "quasi-
steady" solution, 01 = 2.
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by an infinite time solution at the same plate temperature;
and even in that case the solution becomes unsteady again

for larger values of _. Therefore it is concluded that, for

q > O, the effect of the transient terms is significant in

almost all cases. The negative velocities axe evidently the
result of localized heating in the wetting front region, as

opposed to the effect of heating on the dry plate

temperature fax from the wetting front.

CONCLUSIONS

An analytical investigation has been undertaken of the

transient rewetting of an infinitely-long, heated fiat plate

initially above the Leidenfrost temperature. An approxi-

mate closed-form solution for the rewetting velocity has

been obtained by applying some simplifying assumptions to

the equations for heat conduction in the plate.

With a step function initial temperature condition, the

initial rewetting velocity is infinite (either positive or neg-

ative), although this result is explainable and is not physi-

cally unrealistic. The time required to reach steady-state

wetting velocity is found to increase sharply with increasing

plate temperature.
The effect of heating the plate is to decrease rewetting

velocity over time, with dryout (negative rewetting

velocity) eventually occurring in all cases (although the

7 J. Platt



plate temperatures for which this dryout would occur would
generally be too large to be achieved in an actual system).

aQuasi-steady= states (heated conditions for which transient

terms do not affect the results) are found to occur for only

a narrow range of time and heat flux.

APPENDIX A: DERIVATION OF EQUATIONS

For the problem of rewetting an infinitely-long plate ini-

tially hotter than the Leidenfrost temperature (fig. 1) the

two-dimensional, unsteady conduction equation for tem-

perature in the plate is:

T(Xwf,t ) = T O

aT = ka2T + Q
pcp _ ox____

;o
(=,t)

T(X,,f,t) = To

(x > x f)

(AS)

(AI)

The plateisuniformly heated on itsunderside while the top

dry region isconsidered adiabatic and the top wet region

has a heat lossproportional to the differencebetween the

platetemperature and liquidsaturationtemperature. Thus

for a thin plate the conduction term in the Y.direction can

be simplifiedas:

tQQ h (T - T.) (wet) (A2)

ka2T .. -_

0y 2
(dry)

Fax from the wetting front, conditions will be unaffected by

movement of the wetting front and temperatures will be

independent of X, leading to boundary conditions of:

(AS)

Upon transformation to a Lagrangian coordinate system

(X',t) with its origin at the wetting front equations (A4)

and (A5) become:

0T hCT_ Ts ) (X'<0)
ucqTI=ka2T +Q

pcp _i-- T_) ax,----i W-

(A6)

T(0,t) = T O

lOT . aT_ . OUT Q--U__/=k__+_
pep __ aX') ax ,2 s

8T I = 0
OX (-,t)

T(0,t) = T O

(x'>o)

(AT)

Therefore we have two one-dimensional, unsteady conduc-

tion problems to solve (one each for the wet and dry

regions). An additional boundary condition for each of the

problems is the temperature at the wetting front

(X = Xwf), which is assumed to be the Leidenfrost temper-
ature. The systems of equations (without initial conditions,

which axe not yet specified) axe:

8T = k_T + q h(T - Ts)pCp_- ax____i _ -
(X < X_f)

(A4)

where U is the rewetting velocity, which in general is a

function of time.

Initial conditions are sought which satisfy time-

independent, U = 0 forms of equations (A6) and (AT). For

the dry region an isothermal initialcondition is the only

possibility:

T(X' > 0,0) = T 1 (AS)

where T I is a temperature greater than the Leidenfrost

temperature. For the wet region,although another solution

ispossible,an isothermal initialcondition,with the plate at

8 J. Platt



the saturation temperature of the liquid, is adopted for

simplicity:

T(X' < 0,0) = T, (Ag)

The initial conditions therefore are nothing more than a

step function across the wetting front.
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